Here’s How To Test and Screen Multistage Arrestors – Check Out The New Technical Note!

Although this new Technical Note covering how to test/screen an arrestor to ensure that it is working and operating properly was specifically created in reference to our FPL series of units designed to protect GPS and other Global Navigation equipment…the input here also applies to the majority of the NexTek FPL and FPN series units.  Most of the FPL and FPN series, including the FPL GPS arrestors, use multiple stages of protection circuitry inside. 

This relative complexity makes the FPL and FPN series Fine Protectors a bit more complex to test properly, when compared to other common types such as Gas Discharge Tube or Quarter Wavelength Shorted Stub arrestors.

 

Operational/Protection Voltage Testing

  • Without an actual lightning tester (such as the common 1.2×50µs / 8×20µs Induced Lightning waveform testers,) it is difficult to completely verify Transient Response and Performance.
  • The lowest-voltage component is usually the only one that can be tested using a Diode Tester or Slow Rising DC Power Supply & Multimeter combination.  For NexTek FPL and FPN series devices, this usually means a fast-acting semiconductor Protection Diode that is responsible for final energy cleanup.  However, this component is usually the least robust in terms of Transient Current Handling so if it remains intact and operating within specs…the entire unit should be working OK.
    • Test Voltage Levels – Units may have +1V, +3.3V, +5V, +12V, +24, or other common Protection Voltage ratings

Continuity and Insulation Testing

  • Any FPL or FPN series units that are rated to pass DC Power through the unit will test positive for continuity between center pins, when using a Multimeter tool.

 

RF Thru-Performance / Proper Radio Operation

  • One of the simplest ways to test the basic functionality of any arrestor, not just the FPL and FPN series units, is to test the unit in a radio installation and verify proper system operation.  This alone is a positive indicator that the unit is operating properly and is probably not damaged.

Download Technical Note and Learn More

Technical Note – NexTek Arrestors – Servicing and Testing Multistage Units [FPL + FPN] .PDF

Technical Note – NexTek Arrestors – GDT Arrestor Testing & Screening .PDF

Blog Post – Testing Gas Discharge Tube Arrestors


New Technical Note – Transient Testing GDT-Based Surge Arrestors – Information and Details

Full Scale Lightning Testing - Technical Note GDT Transient Testing


Would you like to know more about performing Transient Testing on Gas Discharge Tube based arrestors?  More specifically, testing arrestors against the common Lightning-derived industry-standard 1.2×50µs/8×20µs Voltage/Current Waveform using commonly available equipment to 6kV/3kA surge current levels.

The 1.2×50µs/8×20µs standard is meant to replicate conditions and energy levels that you can expect during an Indirect Lightning Strike, i.e. one where there is a nearby Lightning strike but without any direct attachment to the cable being test.  These are also known as Induced or Coupled Lightning transients, because the lightning energy does not need to direct connect or attach to the coaxial cable’s center conductor for that conductor to be carrying Lightning surge energy.

If you’d like to learn more about how to perform this testing, and even some insights about how a Gas Discharge Tube responds to this type of transient event… check out the brand-new Technical Note/White Paper posted today!


Learn More

Technical Note – Coaxial Arrestors – Lightning Arrestor Testing Details (.PDF)

Coaxial Surge Arrestors (Home Page)